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The author investigates the onset of patterns in vertically oscillated layers of dissipative particles using
numerical solutions of continuum equations to Navier-Stokes order. Above a critical accelerational amplitude
of the cell, standing waves form stripe patterns which oscillate subharmonically with respect to the cell.
Continuum simulations neglecting interparticle friction yield pattern wavelengths consistent with experiments
using frictional particles. However, the critical acceleration for standing-wave formation is approximately 10%
lower in continuum simulations without added noise than in molecular-dynamics simulations. This Brief
Report incorporates fluctuating hydrodynamics theory into continuum simulations by adding noise terms with
no fit parameters; this modification yields a critical acceleration in agreement with molecular-dynamics
simulations.
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A successful theory of granular hydrodynamics would al-
low scientists and engineers to apply the powerful methods
of fluid dynamics to granular flow. Despite experimental
�1,2� and computational �3,4� evidence demonstrating the po-
tential utility of hydrodynamics models for grains, a general
set of hydrodynamic governing equations is not yet recog-
nized for granular media �5–7�.

One granular hydrodynamics approach derives continuum
equations for number density n, velocity u, and granular
temperature T �3

2T is the average kinetic energy due to ran-
dom particle motion� by modeling particle interactions with
binary, hard-sphere collision operators in kinetic theory
�8–10�. These equations represent a different approach from
other popular methods of modeling grains, such as
molecular-dynamics �MD� simulations which simulate indi-
vidual grain motion. This Brief Report directly incorporates
fluctuating hydrodynamics theory into continuum simula-
tions of three-dimensional �3D� time-dependent granular
flow.

Vertically shaken layers provide an important testbed for
granular phenomena �11–15�. A flat layer of grains with
depth H oscillated sinusoidally in the direction of gravity
with frequency f and amplitude A leaves the plate at some
time during the cycle if the maximum acceleration of the
plate amax=A�2�f�2 is greater than the acceleration of grav-
ity g. Thus the layer leaves the plate if the dimensionless
accelerational amplitude �=amax /g exceeds unity. When �
exceeds a critical value �C, the layer spontaneously forms
standing waves which are subharmonic with respect to the
plate. Various standing-wave patterns are found experimen-
tally, depending on � and the dimensionless frequency f�

= f�H /g �14�.
Previous experiments �16� and MD simulations �17� have

shown that friction between grains plays a role in these pat-
terns. Experimentally, adding graphite to reduce friction de-
creased �C and prevented the formation of stable square or
hexagonal patterns found for certain ranges of f� and � in
experiments without graphite �16�. Similarly, MD simula-
tions with friction between particles have quantitatively re-
produced stripe, square, and hexagonal subharmonic stand-
ing waves seen experimentally �18�, but MD simulations

without friction yield only stable stripe patterns and display a
lower �C �17�. In this Brief Report, I investigate the onset of
stripe patterns in continuum simulations of frictionless
particles.

Continuum equations for granular media have been pro-
posed using a variety of approximations �1,3,7–10�. I use a
continuum simulation previously used to model shock waves
�19� and patterns �4� in a granular shaker in order to directly
compare to previous results �4�. The granular fluid is con-
tained between two impenetrable horizontal plates at the top
and bottom of the container. The lower plate oscillates sinu-
soidally between height z=0 and z=2A and the ceiling is
located at a height Lz above the lower plate. Periodic bound-
ary conditions are used in the horizontal directions x and y to
eliminate sidewall effects. The dimensions of the boxes Lx,
Ly, and Lz can be varied. This simulation numerically inte-
grates equations of Navier-Stokes order proposed by Jenkins
and Richman �9� for a dense gas of frictionless �smooth�,
inelastic hard spheres with uniform diameter �. Energy loss
due to collisions is characterized by a single parameter: the
normal coefficient of restitution e=0.70. Integrating these
hydrodynamic equations using a second-order finite differ-
ence scheme on a uniform grid in 3D with first-order adap-
tive time stepping �19� yields number density, momentum,
and granular temperature.

Above �C, stripes are seen experimentally for a range of
parameters, including nondimensional frequency f�=0.4174
and layer depth H=5.4� �14�. In this Brief Report, I compare
to previous continuum and MD simulations �4�, where � was
varied while frequency f�=0.4174 and the number of par-
ticles �6 /�2 particles per unit area which experimentally cor-
responds to a layer depth H=5.4� as poured �18�� were
fixed. This corresponds to a frequency of 56 Hz for particles
with diameter �=0.1 mm. To compare current results to that
previous investigation, I use the same frequency, layer depth,
and cell sizes horizontally Lx=Ly =42� and vertically Lz
=80� �4�.

In that report, continuum simulations produced flat layers
for accelerational amplitudes below �C

cont=1.955�0.005 and
stripe patterns above this critical value. MD simulations pro-
duced disordered peaks and valleys below the onset of
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stripes, but only displayed stripe patterns above �C
MD

=2.15�0.01, roughly 10% higher than in continuum simu-
lations �4�. That study hypothesized that this discrepancy
may be due to fluctuations which were unaccounted for in
the continuum model.

In Rayleigh-Bénard convection of fluids near the onset of
convection patterns, fluctuations caused by thermal noise
create deviations from the dynamics predicted by Navier-
Stokes equations without a noise source. Fluctuating hydro-
dynamics �FHD� theory models these fluctuations by adding
noise terms to the Navier-Stokes equations �20–22�. FHD
theory accurately describes the dynamics of fluids near con-
vection onset �23,24�. Experiments indicate that fluctuations
due to individual grain movement play a larger role in granu-
lar media than do thermal fluctuations in ordinary fluids �25�.

Extending FHD theory to granular media is not trivial.
The noise terms derived by Landau and Lifshitz �20� treat
fluctuations near equilibrium which are small compared to
the hydrodynamic fields and do not provide for local energy
loss due to particle inelasticity. However, granular shaker
experiments show fluctuations much larger than in ordinary
fluids �25� and any fluidized granular system is far from
equilibrium due to inelastic particle collisions. In the shaken
layers considered here, the mean-free path of a particle is on
the order of a particle diameter or less, so fluctuations due to
small number statistics may be significant. Finally, recent
simulations of a dilute granular gas �26� showed that
Landau-Lifshitz theory underestimates fluctuations in a one-
dimensional �1D� homogeneous cooling state by neglecting
memory effects of inelastic particles.

As a test of the applicability of FHD, I treat fluctuations in
the granular system analogously to thermal fluctuations in
ordinary fluids. At each time step, the simulation calculates
random local stresses and heat fluxes given by Landau and
Lifshitz �20� at each grid point with no fit parameters and
includes these terms in the continuum equations �9,27�.

To visualize peaks and valleys formed by standing-wave
patterns, I calculate the height of the center of mass of the
layer zcm�x ,y , t� as a function of horizontal location in the
cell at various times t. At a given time t0 and horizontal
location �x0 ,y0�, zcm�x0 ,y0 , t0� is the center of mass of all
particles whose horizontal coordinates lie within a bin of size
�xbin�ybin centered at �x0 ,y0�. The simulation grid size de-
fines the bins �xbin=�ybin=2�. Throughout this Brief Re-
port, I characterize the patterns at the beginning of a cycle
when the plate is at its equilibrium position and moving up-
wards. Peaks in the pattern correspond to maxima of zcm;
valleys correspond to minima.

An example standing-wave stripe pattern is shown in Fig.
1. Continuum simulations both with �Fig. 1�b�� and without
noise �Fig. 1�a�� produce stripe patterns for �=2.2 and f�

=0.4174. These patterns oscillate subharmonically, repeating
every 2 / f , so the location of a peak of the pattern becomes a
valley after one cycle of the plate and vice versa �14�. When
the accelerational amplitude is reduced to �=1.9, stripes do
not appear.

In both cases, two wavelengths fit in the box for this box
size and frequency �Fig. 1�, although simulations without
noise show sharper peaks and valleys with larger amplitude
than simulations with noise. To compare these amplitudes, I

examine the deviation of the height of the center of mass of
the layer as a function of horizontal location in the cell from
the center-of-mass height averaged over the entire cell

��x,y,t� = zcm�x,y,t� − �zcm�x,y,t�� , �1�

where brackets represent an average over all horizontal loca-
tions in the cell at a given time t. Thus, ��2�t�� represents the
mean-square deviation of the height of the layer from the
mean height of the layer. Note that ��2� is large for layers
with high amplitude peaks and valleys and goes to zero as
the layer becomes perfectly flat.

To distinguish between ordered patterns �stripes� and dis-
ordered fluctuations, I characterize the long-range order of
the pattern. I first calculate the power spectrum of the pattern
S�kx ,ky , t� as a function of wave numbers kx and ky. Trans-
forming to polar coordinates kr and k� in k space and inte-
grating radially yields the angular orientation of the power
spectrum S�k��. I bin k� into 21 bins between k�=0 and k�

=� and characterize the long-range order by the fraction of
the total integrated power that lies in the bin with the maxi-
mum power

Pmax =
Smax

�
0

�

S�k��dk�

, �2�

where Smax is the integrated power within an angle � /21 of
the maximum value of S�k��. For a perfectly disordered state,
with equal power in all directions, Pmax would approach 1

21
	0.05, while Pmax=1 for a state with all power in a single
bin. Thus, Pmax provides a measure of order when stripes
form.

I examine ��2� and Pmax for simulations with varying �.
In each case, the simulation begins with a flat layer above the
plate with small amplitude initial random fluctuations. The
simulation runs for 400 cycles of the plate to reach a periodic
steady state. Then ��2� and Pmax are averaged over the next
50 cycles. Compared to simulations without noise, simula-
tions with noise show greater variation between cycles in
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FIG. 1. Overhead view of a layer of grains, showing the center-
of-mass height zcm as a function of horizontal position �x ,y� in a
cell with horizontal dimensions Lx	Ly =42�	42�, from con-
tinuum simulations �a� without noise and �b� with noise. Peaks of
the layer corresponding to large center-of-mass height zcm are
shown in white; valleys corresponding to low zcm are shown in
black.
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their final state; I run these simulations 3 times for each � to
find an average less influenced by transient behavior. As pat-
terns occur for �=2.20, but not for �=1.90, three additional
simulations �for a total of six� were run for each � in the
range 1.90
�
2.20 to more precisely locate pattern onset.

For simulations without noise, fluctuations in the initial
condition decay over time for ��1.94, producing a flat layer
�Fig. 2�a��. As � increases, there is a jump to a periodic state
of nonnegligible ��2� for �=1.96 and large amplitude waves
occur for all ��1.96 �the region 1.94
�
1.96 is shaded in
Fig. 2�a��. When noise is added, the layer remains flat for
some values ��1.96 �Fig. 2�b��. Nonnegligible amplitudes
of ��2� occur for �
2.0, but there is not a sharp jump in
amplitude.

Since ��2� in Fig. 2�b� increases gradually with increasing
� rather than showing a sharp onset of waves, I examine the
order parameter Pmax to distinguish between stripes and dis-
ordered fluctuations as shown in Fig. 3. For simulations
without noise, all layers with �
1.96 show a nearly con-
stant value of Pmax	0.4 �Fig. 3�a��, corresponding to the
stripe patterns seen in Fig. 1�a�. For ��1.94, the initial fluc-
tuations decrease over time, leading to a very flat layer �cf.
Fig. 2�a�� with lower Pmax. I identify the critical value
�C

cont=1.95�0.01 above which stripe patterns are formed in
simulations without noise.

For noisy simulations, there is relatively large uncertainty
in Pmax in the shaded region 2.07���2.17 �Fig. 3�b��. Vi-
sual inspection shows transient behavior in this region, with
temporary order appearing and then disappearing, yielding
variation in Pmax from simulation to simulation. Above this
shaded region, Pmax	0.4 with low variation, indicating con-
sistently reproducible stripes. Below this region, Pmax is con-
sistently lower, indicating disordered fluctuations. I thus
identify the critical value above which stripe patterns form in
simulations with FHD terms �C

FHD=2.12�0.05.
These results for continuum simulations without noise

�C
cont=1.95�0.01 agree with previous continuum simula-

tions showing an abrupt transition from a flat layer to stripe
patterns at �C

cont=1.955�0.005 �4�. Simulations with FHD

noise, however, show a gradual increase of disordered fluc-
tuations below the onset of ordered stripes and a transition to
stripes at �C

FHD=2.12�0.05. While continuum simulations
with noise differ from those without noise, they are consis-
tent with previous MD simulations showing the transition to
stripe patterns at �C

MD=2.15�0.01, with a gradual increase
in amplitude of disordered fluctuations below this value �4�.

Finally, I investigate the wavelengths of these patterns.
Experiments have shown that wavelength � depends on the
frequency of oscillation �28,29�. For a range of layer depths
and oscillation frequencies, experimental data for frictional
particles near pattern onset were fit by the function ��=1.0
+1.1f�−1.32�0.03, where ��=� /H �29�.

I investigate frequency dependence by holding dimen-
sionless accelerational amplitude �=2.2 constant, while
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FIG. 4. Dispersion relations for stripes which form perpendicu-
lar to the long dimension of cells with horizontal dimensions
168�	10�. Data for simulations with noise are shown as squares,
without noise as triangles, and points where the two simulations
yield the same wavelength are shown as circles. Error bars are
calculated exclusively from discretization due to periodic boundary
conditions in a finite-size box. In both simulations, the dominant
wavelength of the final oscillatory state � fits very well to the dis-
persion relation found in experiments ��=1.0+1.1f−1.32�0.03 �solid
line� �29�.
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FIG. 2. Mean square deviation ��2� of the local center-of-mass
height from the average center-of-mass height of the layer as a
function of accelerational amplitude � for simulations �a� without
noise and �b� with noise. In �a�, ��2� is averaged over 50 cycles of
a single simulation for each � �dots�. Shaded region 1.94
�

1.96 indicates the transition between flat layers and layers with
nonnegligible peaks and valleys. For simulations with fluctuations,
the data in �b� are averages �dots� with root-mean-square deviation
�bars� from 50 cycles from each of six trials within the range
1.90
�
2.20 and each of three trials outside that range.
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FIG. 3. Global ordering Pmax as a function of nondimensional
accelerational amplitude � for continuum simulations �a� without
noise and �b� with noise. For simulations without noise, Pmax is
averaged over 50 cycles from a single simulation and represented as
dots, while for simulations with noise, Pmax is averaged �dots� over
multiple simulations, with error bars calculated as root-mean-square
deviation from this average. In both cases, there is a transition
�shown in gray� to an approximately constant Pmax	0.4. The tran-
sition areas shown in gray are 1.94
�
1.96 in �a� and 2.07
�

2.17 in �b�.
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varying dimensionless frequency f�. Simulations were con-
ducted in boxes of sizes Lx=168�, Ly =10�, and Lz=160�.
This orientation causes stripes to form parallel to the y axis.
The dominant wavelength was calculated from the wave
number kx in the x direction which exhibited the maximum
power during 50 cycles of the oscillatory state. Due to the
periodic boundary conditions and finite box size, wave-
lengths must fit in the box an integer number of times, yield-
ing uncertainty in the wavelength that would be selected in
an infinite box.

For this box size, frictionless MD simulations and con-
tinuum simulations without noise have been shown to agree
with experimental results for frictional particles through the
range 0.20� ft�0.45; friction appears unimportant in wave-
length selection through this range �4�. Wavelengths found in
continuum simulations with and without noise are compared
to the dispersion-relation fit to experimental data in Fig. 4.
Both simulations agree quite well with the experimental fit
throughout this range. The addition of noisy fluctuations
does not appear to significantly affect the wavelength of the
patterns.

In conclusion, continuum simulations without friction can
describe important aspects of pattern formation in granular
media. With or without noise, frictionless continuum simula-
tions produce patterns with wavelengths consistent with ex-
perimental results in layers of particles with friction. For the
shaken layers studied in this Brief Report, patterns in con-
tinuum simulations without noise occur for critical accelera-
tional amplitude �C approximately 10% lower than in ex-
perimentally verified molecular-dynamics simulations.
Including FHD alters the onset of patterns; �C for continuum
simulations with noise is consistent with MD simulations,
but not with continuum simulations lacking this noise. These
results indicate that fluctuations play a significant role in this
system and also suggest directions for further research.
Simulations including memory effects �26� or other varia-
tions in the FHD model could be compared to test which
approximations significantly alter pattern formation. In addi-
tion, testing the effects of noise on other granular systems
will be important in establishing a general theory of granular
hydrodynamics and the role of fluctuations within that
theory.
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